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Abstract
Estimates of the real death toll of the COVID-19 pandemic have proven to be prob-
lematic in many countries, Italy being no exception. Mortality estimates at the local 
level are even more uncertain as they require stringent conditions, such as granular-
ity and accuracy of the data at hand, which are rarely met. The “official” approach 
adopted by public institutions to estimate the “excess mortality” during the pan-
demic draws on a comparison between observed all-cause mortality data for 2020 
and averages of mortality figures in the past years for the same period. In this paper, 
we apply the recently developed machine learning control method to build a more 
realistic counterfactual scenario of mortality in the absence of COVID-19. We dem-
onstrate that supervised machine learning techniques outperform the official method 
by substantially improving the prediction accuracy of the local mortality in “ordi-
nary” years, especially in small- and medium-sized municipalities. We then apply 
the best-performing algorithms to derive estimates of local excess mortality for the 
period between February and September 2020. Such estimates allow us to provide 
insights about the demographic evolution of the first wave of the pandemic through-
out the country. To help improve diagnostic and monitoring efforts, our dataset is 
freely available to the research community.
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1 Introduction

The COVID-19 pandemic is a complex and constantly evolving phenomenon that is 
affecting the entire world heterogeneously. The disease caused by the spread of this 
new form of coronavirus has rapidly propagated worldwide, affecting countries with 
different timing and intensity (Ceylan 2020). Italy was the first country in Europe 
to be hit by COVID-19, and, to date, it ranks among the countries with the high-
est fatality toll. Given the diverse geographical spread of the pandemic, local esti-
mates provide an important tool to document the spread of COVID-19. However, 
the official data on the death toll of COVID-19 are scarce at the local level, and, 
when available, they are likely to suffer from substantial underreporting (Ghislandi 
et  al. 2020).1 Besides, such measurement error is likely to be heterogeneous even 
within countries (Leon et al. 2020), and this inaccuracy may lead to incorrect beliefs 
about how COVID-19 spreads across space and over time. A valid alternative for 
estimating the number of deaths caused by the pandemic (directly or indirectly) 
consists of considering the number of daily certified all-cause deaths (deaths from 
any cause, not only those related to coronavirus).2 In particular, using historical data 
on the number of daily certified deaths to estimate the number of daily deaths in 
the absence of the pandemic could vastly reduce the uncertainty associated with 
COVID-19 official data, especially at a disaggregated geographical level. This study 
applies this approach to Italy.

As the pandemic has affected the entire country, it is not feasible to use the most 
common counterfactual approach that compares treated and non-treated municipali-
ties within the country. In this unusual setting, the benchmark approach to estimate 
excess mortality — which we will call the “intuitive” approach — adopted by sev-
eral national and international institutions, and employed in many scientific works 
(see Section  2), consists of comparing the actual number of cumulative all-cause 
deaths in 2020 with the numbers observed in the past for the same municipality.3 
Stated differently, it is a before–after analysis of the changes between post-pandemic 
mortality and the pre-pandemic average over the past year(s). Yet, being simply an 
unconditional average, this comparison does not employ any covariates, nor indeed 
any model, and may be sensitive to outliers and other data issues. Therefore, it may 
be considered as an excessively coarse approach to generate excess mortality fig-
ures, especially when employed at a fine geographical scale.

This paper, instead, makes use of machine learning (ML) and municipality-level 
panel data from the recent past (from 2015 to 2019) to build the counterfactual sce-
nario. By applying ML algorithms on all-cause deaths’ data, we credibly estimate 
excess mortality in Italian municipalities (local administrative units, LAU) from 

1 Official data on coronavirus reported cases are released only at the provincial level (the number of 
infected people) or at the regional level (the number of coronavirus deaths).
2 On December 3, 2020, the Italian National Institute of Statistics (Istat) released the number of daily 
certified deaths for the period January 1 to September 3, 2020, for all 7,904 Italian municipalities.
3 Excess mortality is the number of deaths from all causes during a crisis above and beyond what we 
would have expected to see under “normal” conditions (see Roser et al. 2020).
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February 21, 2020 (the official date of the first coronavirus cluster in Italy), to Sep-
tember 30, 2020.4 To this aim, we compare the official number of cumulative all-
cause deaths for the period February 21 to September 30, 2020, with an estimate 
of the number of cumulative deaths over the same period in an “ordinary” situa-
tion, i.e., in the counterfactual situation without the pandemic. We then consider 
the difference between observed mortality and our counterfactual predictions as the 
cumulative number of excess deaths, which are very likely to be due, either directly 
or indirectly, to COVID-19. Differently from the intuitive approach, however, our 
counterfactual scenario is not just a pre-pandemic mortality average but rather an 
ML-generated prediction for each municipality, generated using only pre-pandemic 
information, of an alternative, no-pandemic, “business-as-usual” mortality scenario.

It is important to note that we estimate the gross excess mortality due to COVID-19, 
i.e., the number of deaths due directly to COVID-19 infections as well as deaths due to the 
collateral effects of the lockdown. Such collateral effects have lowered the likelihood of 
dying from some causes such as road and workplace accidents, pollution-related diseases, 
or criminal activities and increased the likelihood of dying owing to the unprecedented 
stress on the public health system (e.g., severe delays in the hospitalization process).

We report estimates obtained using three estimation approaches: intuitive, ML, 
and a classical linear method. The intuitive approach sketched above is used exclu-
sively as a benchmark to evaluate the performance of the ML techniques. We then 
employ three ML algorithms to estimate excess mortality for all municipalities. ML 
techniques allow predicting mortality trends by “training data,” i.e., by learning from 
past information, evaluating out-of-sample model performance on unseen “testing 
data”, and finally comparing predicted and actual values to derive excess mortality 
figures. Specifically, we employ the least absolute shrinkage and selection operator 
(LASSO), random forest, and stochastic gradient boosting. Finally, for the sake of 
comparison, we also test the performance of a straightforward OLS regression.

We show how all these methods outperform, on average, the intuitive approach 
adopted by Italian institutions with mean squared error (MSE) predictive gains of up 
to 17.8% and especially sizable improvements in smaller municipalities. Thanks to 
the higher accuracy of data-driven methods, we improve the estimates of local mor-
tality by providing a more precise and reliable “counterfactual” scenario. In Sec-
tion 4.2, we make use of local mortality estimates to fully document the local and 
temporal evolution of the COVID-19 pandemic in Italy during the first wave.

2  Literature review

In this section, we first survey the most relevant studies on excess mortality during 
pandemics, focusing on their methodological aspects, and then summarize the main 
findings of papers on mortality during the first wave of the COVID-19 pandemic in 
Italy.

4 However, there is some empirical evidence that suggests that COVID-19 was already present in north-
ern Italy at the end of January (see Cerqua and Di Stefano 2021).
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2.1  Excess mortality estimation: Methodological aspects

Past and recent studies have dealt with pandemics’ effects on mortality trends by 
estimating the excess mortality across several countries.5 In particular, various 
research analyzed the excess of deaths due to the influenza pandemic of 1918–1920, 
known as the Spanish flu. The majority of these studies applied intuitive approaches 
(see, among others, Mortara 1925; Pinnelli and Mancini 1998; Murray et al. 2006; 
Barro et al. 2020) or more sophisticated techniques in order to estimate excess mor-
tality. For example, Ansart et al. (2009) used a regression model to calculate base-
line and compare it with the observed mortality. The intuitive approach was also 
used by Luk et al. (2001) to compare the age-specific mortality during the Spanish 
flu with the one during other pandemics (1957 Asian Flu and 1968 Hong Kong Flu) 
and by Viboud et al. (2016) to analyze the pandemic of 1957-1959 in 39 countries 
of the world.

Within the European mortality monitoring project (EuroMOMO), a standardized 
approach aimed at monitoring the mortality excess due to influenza in Europe was 
developed.6 According to this approach, the mortality baseline was calculated apply-
ing a Poisson regression model, corrected for overdispersion. This approach was 
used by Mazick et al. (2010) that compared the all-cause deaths observed in 8 Euro-
pean countries during the 2009 A(H1N1) pandemic, known as the swine flu. Similar 
models were implemented to estimate excess mortality during the swine flu by Gran 
et al. (2013) for Norway and Yang et al. (2012) for Hong Kong.

Not surprisingly, as soon as official data on deaths have become available, a large 
number of scholars have gauged the COVID-19 impact on mortality through intui-
tive or more sophisticated approaches.7 Several scholars have developed country-
level analyses that use more sophisticated approaches to estimate excess mortality 
due to COVID-19. For instance, Felix-Cardoso et al. (2020) used deviation from the 
expected value from homolog periods (DEV) and the remainder after seasonal time 
series decomposition (RSTS) considering total and age- and gender-specific excess 
mortality in five countries (England and Wales, France, Italy, Netherlands, and Por-
tugal). Vestergaard et al. (2020), Fouillet et al. (2020), and Sinnathamby et al. (2020) 
employed the statistical model developed by EuroMOMO to 24 European states, to 
France, and England, respectively. A similar model was used by Weinberger et al. 
(2020) for the USA. Jiang et  al. (2020) introduced a self-normalization technique 
to assess the trajectory of COVID-19 deaths for 30 countries. They designed a two-
stage forecasting scheme to predict cumulative deaths in the USA. Li and Linton 
(2021) implemented a quadratic time trend model to forecast the total number of 

6 For further information: https:// www. eurom omo. eu/.
7 This literature review provides a comprehensive but not exhaustive review of the studies on the 
COVID-19 impact on mortality. Country-level analysis with intuitive methodologies is also conducted by 
Modig et al. (2021) for Sweden, Nogueira et al. (2020) for Portugal, and Stang et al. (2020) for Germany.

5 The following influenza pandemics occurred in the twentieth and twenty-first centuries: the Spanish flu 
in 1918–1920, the Asian flu in 1957–1958, the Hong Kong flu in 1968, and the Swine flu in 2009 (World 
Health Organization).
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deaths (and cases) for 191 countries. Pham (2020), likewise for the US situation, 
dealt with the cumulative number of deaths due to the ongoing COVID-19, based 
on the five-parameter logistic model. Rivera et al. (2020) proposed a semiparametric 
method and a conventional time series method and analyzed nine US states. Van-
doros (2020), for England and Wales, applied a difference-in-differences approach in 
order to investigate the number of deaths during the pandemic. Vieira et al. (2020) 
estimated the excess mortality in Portugal by comparing observed deaths with the 
average and respective standard deviation of the number of daily all-cause mortal-
ity in the past years to estimate mortality by age and cause. Then, they tested an 
ARIMA model to validate the relevant excess mortality. At a more detailed geo-
graphical level and with the use of a model that considers age group and symptom 
status, there is research conducted by Hauser et al. (2020) in Hubei province, China, 
and six regions in Europe.

Although many papers use intuitive and counterfactual approaches, only two 
works, to our knowledge, employ ML techniques to estimate excess mortality, 
though not in the context of the COVID-19 crisis. Deprez et al. (2017) investigated 
two classical models for estimating mortality rates in Switzerland and, by apply-
ing a regression tree boosting machine, detected different mortality models’ weak-
nesses. Levantesi and Pizzorusso (2019) extended the work of Deprez et al. (2017) 
by investigating the ability of ML to improve the accuracy of some standard stochas-
tic mortality models, using not only decision trees but also random forest and gradi-
ent boosting.8

2.2  Mortality evolution during the COVID‑19 pandemic in Italy

Many studies have gauged mortality trends in Italy during the COVID-19 pandemic, 
applying various methodologies.

First of all, two important contributions by public institutions used the intuitive 
approach for estimating the impact of the COVID-19 pandemic on total resident 
population mortality by age and gender. The Italian National Institute of Statistics 
(Istat) and the National Institute of Health (ISS) have continuously monitored mor-
tality trends in Italy, providing several reports on excess mortality.9 As explained 
above, these reports gauge the excess mortality as differences between observed 
mortality for all causes and the average for the same period in 2015–2019. Istat and 
ISS (2020a) analyzed the period January 1 to November 30, 2020, at the provin-
cial and regional level and found around 50,000 excess deaths for the first wave of 
the pandemic, over 90% of which in northern Italy. Deaths were concentrated (72%) 
in the over 85 population. On the contrary, they found no relevant changes in the 
number of deaths for the period from June to September. The second institutional 
contribution comes from the National Institute of Social Security (INPS) (2020) that 

8 ML algorithms applied to research questions related to COVID-19 are used by Bonacini et al. (2021), 
Dandekar and Barbastathis (2020), and Magri and Doan (2020).
9 ISS is the main institution for research, control, and technical scientific advice on public health in Italy.
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compiled a report for the first quarter of 2020, using the intuitive approach but 
weighting deaths for the resident population. The analysis is conducted at the pro-
vincial level with a focus on northern municipalities. The report highlighted that 
on April 30, the municipalities with the highest excess mortality were those located 
in the provinces of Bergamo, Brescia, Cremona, Lodi (Lombardy region), and Pia-
cenza (Emilia Romagna).

Besides, many scholars deal with excess mortality at the regional level, provincial 
level, and municipality level using intuitive or more sophisticated approaches, above 
in the early phase of pandemic, when data availability was limited.

Regarding the regional level, Modi et al. (2020) use the conditional mean with 
a Gaussian process and synthetic control method to estimate the weekly excess 
of deaths for Italian regions up to April 11. They found that excess mortality is 
considerable in northern regions, and the cumulative deaths are higher than the 
deaths officially attributed to COVID-19. Investigating provincial-level trends, 
Ceriani and Verme (2020) compared mortality rates in 2020 with mortality rates 
in 2015–2019 in February to April. They found that the increase of daily mortality 
rates (greater for males and older) was more than 100% in mid-February in many 
Italian provinces (Bergamo, Cremona, Lodi, Piacenza, and Brescia), the same that 
experienced the highest deaths due directly to COVID-19 in the middle of March 
2020. Scortichini et  al. (2020) estimated the mortality excess at the provincial 
level with a two-stage analysis. They calculated the baseline risk by applying a 
quasi-Poisson regression model taking into account trends and weather conditions. 
Their results show an increase of deaths equal to 29.5% from the expected mor-
tality in the period 15th of February 15th of May 2020. The majority of excess 
deaths (71%) were found in the northern regions (Lombardy, Emilia Romagna, 
and Veneto).

Given the higher incidence of COVID-19 in the north of Italy, many scholars esti-
mated excess mortality at the municipal level, focusing on northern cities. Buonanno 
et  al. (2020), by combining official statistics, retrospective data, and original data 
(i.e., obituaries and death notices), provided an estimate of excess mortality in Lom-
bardy municipalities. They found that deaths recorded as directly due to COVID-19 
constitute only half of the excess deaths verified in March. In comparison, Depalo 
(2021) applied partial identification to administrative data at the municipality level 
to estimate the number of deaths, the number of infections, and mortality rates from 
COVID-19 in Lombardy. He calculated that in March 2020, there were between 
10,000 and 18,500 deaths, more than in the period 2015–2019.

Gibertoni et al. (2021) extended the excess mortality study on Lombardy, Emilia 
Romagna, and Veneto’s municipalities, differentiating for several age groups. For 
each subgroup, a simple linear regression on the deaths in 2015–2019 was used, 
and the parameters were applied to estimate the expected number of deaths in 2020. 
They found that the excess of deaths presents several differences among the munici-
palities, also within regions, and that the differences between men and women are 
higher in under 75.

Looking at the whole Italian territory, Del Re and Meridiani (2020) compared 
the excess mortality trend (calculated by subtracting a model obtained from the 
average deaths in 2015–2019) with the COVID-19 deaths for eight principal 
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Italian cities considering the February to April period. They found a high excess, 
particularly in Brescia, and concluded that all-cause mortality excess follows the 
COVID-19 mortality trend. Differences between all-cause deaths and COVID-19 
deaths were found in gender and age. Michelozzi et al. (2020) compared the total 
excess mortality across the 31 biggest Italian municipalities up to April with the 
deaths directly due to COVID-19. They use the intuitive approach, considering 
the average of the 5 previous years. They found that half of the mortality excess 
was due to COVID-19 deaths. Like other scholars, they observed differences 
between the age groups and a less relevant impact of officially COVID-19 deaths 
on the older people’s mortality excess. Ciminelli and Garcia-Mandicó (2020) 
estimated the excess mortality for 4100 northern municipalities from February 
21 to March 31 by running a difference-in-differences regression model using 
data on mortality from 2016 as a control to mortality in 2020. They found that 
mortality excess was particularly high in Codogno and Alzano Lombardo (in the 
provinces of Lodi and Bergamo, respectively) and at the borders between Lom-
bardy and other regions. Biggeri et al. (2020) identified spatial clusters of excess 
mortality for all Italian municipalities for the period January to April 2020. The 
mortality excess was estimated by applying a Bayesian model and considering as 
a baseline the average deaths 2015–2019. They found that the excess deaths are 
particularly diffuse in Lombardy, Piedmont, and Emilia Romagna regions. Blan-
giardo et  al. (2020) provided a measure of the weekly excess mortality for all 
the Italian municipalities over the period January to April 2020 by predicting the 
expected mortality with a Poisson distribution and specifying a Bayesian hier-
archical model on the log mortality relative risk. They found a relevant excess 
death in the northern regions and marked geographical differences also inside 
regions and between close locations.

3  Data and methodology

3.1  Data

On December 3, 2020, Istat released data on the daily number of all-cause deaths 
from January 1 to September 30 on all 7,904 Italian municipalities.10 In addition, 
Istat released data on the daily number of all-cause deaths for all the Italian munici-
palities for the years 2015–2019. We used such historical data and other variables to 
estimate excess death during the coronavirus outbreak in Italy. Our dependent vari-
able is the cumulative number of deaths (per 10,000 inhabitants) calculated for three 
different periods: February 21 to March 31, February 21 to June 30, and February 
21 to September 30.

10 Due to the creation of Mappano as a new administrative unit in 2017 and to the lack of mortality data 
for all years, we cannot analyze 6 municipalities: Borgaro Torinese, Caselle Torinese, Leini, Mappano, 
and Settimo Torinese. Besides, as 2020 is a leap year, we decided to ignore the deaths that occurred on 
February 29 for reasons of comparability with data from previous years.
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We feed the ML models with 16 selected covariates covering aspects strongly 
related to deaths such as demographic, health system, economic, and contamination 
(air pollution) variables. This set of variables allows us to estimate the mortality 
trend for 2020 in the counterfactual situation, i.e., without the outbreak of coronavi-
rus, in a more accurate way.

As COVID-19 is thought to be more lethal among men and the elderly (Dowd 
et al. 2020; Dudel et al. 2020), we control for the age structure, i.e., the share of men 
in the population, the share of those aged 65+ (overall as well as only men), and 
the share of those aged 80+ (overall as well as only men). Further, we control for 
the resident population, the overall number of deaths in the previous year, and the 
overall number of deaths in the period from January 1 to February 20, 2020, i.e., the 
7 weeks before the coronavirus outbreak in Italy.

We also control for the number of employees as this is likely related to the 
heterogeneous spread of the contagion (see Ascani et  al. 2020), for the share of 
employment in manufacturing, and for PM-10 as a measure of air quality. The 
latter two variables take into account that the most vulnerable people are those 
affected by respiratory diseases, conditions associated with high mortality in 
COVID-19 infection, which are more widespread in industrialized areas.11 For 
similar reasons, we also control for population density and the degree of urbaniza-
tion of the municipality.

As for healthcare characteristics, we control for a dummy variable equal to 1 if 
there is a hospital in the municipality and another dummy variable equal to 1 if there 
is a hospital in at least one of the neighboring municipalities. Lastly, as the lock-
down imposed after the coronavirus outbreak surely decreased the number of deaths 
due to road accidents, we control for the number of deaths due to road accidents in 
the previous year. This way, we compare municipalities with similar mortality rates 
due to road accidents. Table 1 reports the yearly average values of the dependent and 
the explanatory variables for the period 2015–2020.

3.2  Methodology

We use two different sets of approaches to estimate excess mortality: intuitive and 
ML. Estimating excess mortality requires a comparison of the observed mortality 
data with counterfactual mortality figures, i.e., with an estimate of the local mor-
tality that would have been observed had the pandemic never hit Italy. This is not 
an easy task because, although heterogeneously, the entire country was affected 
by COVID-19, so that there are no “untreated” units but only “treated” ones. This 
implies that we cannot construct the counterfactual scenario by looking at the 

11 Employment data come from the Statistical Register of Active Enterprises (ASIA) archive, which cov-
ers the universe of firms and employees of industry and services. PM-10 data are taken from the Euro-
pean Environment Agency:
 http:// aidef. apps. eea. europa. eu/? sourc e=% 7B% 22que ry% 22% 3A% 7B% 22mat ch_ all% 22% 3A% 7B% 
7D% 7D% 2C% 22dis play_ type% 22% 3A% 22tab ular% 22% 7D.
 PM-10 data is from 573 monitoring stations distributed across the Italian territory. We employ the krig-
ing spatial interpolation to impute the PM-10 average yearly value for each municipality.
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number of all-cause deaths in 2020 for non-affected municipalities.12 As a rem-
edy for this peculiar situation, we exploit the statistical power of the time series 
data on all-cause deaths for the period 2015–2019 to build counterfactual mortal-
ity estimates and, in turn, derive the impact of coronavirus on local mortality.

3.2.1  The intuitive approach

The intuitive approach is straightforward: it consists of comparing the actual trend of 
cumulative deaths in 2020 with the trends of cumulative deaths observed in the past 
for the same municipality (in the previous year or for the average of previous years). 
In this case, we consider the average of the cumulative number of annual deaths in 
the period 2015–2019. This approach is easy to interpret, but it does not allow to 
take into account unobserved factors such as flu epidemics or climatic conditions, 
which can vary over time and could be highly sensitive to small changes in the input 
data — especially when applied at a high granularity level. The intuitive approach 
has recently been used in several official reports, as mentioned in Section 2.13

3.2.2  The ML approach

Our aim is to use ML techniques to generate a “counterfactual” scenario with pre-
dictions of what mortality figures would have been under “ordinary” conditions, i.e., 
if the “treatment” represented by COVID-19 would not have happened.

ML primarily deals with prediction. The recent explosion of ML in the econom-
ics literature is indeed due to the exploration of the so-called prediction policy prob-
lems (Kleinberg et al. 2015). However, recent developments have begun to exploit 
the predictive power of ML to also tackle causal inference research questions. In 
particular, Varian (2014, 2016) was the first to note that, since counterfactual build-
ing is essentially a predictive task, ML tools are, in principle, fit for the job. In a 
panel data setting, one could exploit the time series of pre-treatment observations 

12 In principle, one could make use of municipalities of southern regions or the islands that were less 
affected by the spread of the contagion. But, apart from the fact that, in the absence of reliable and com-
plete data on the spread of the contagion, it would be difficult to set an objective threshold for belonging 
to this control group, these municipalities would be so different under almost every aspect from the more 
severely hit northern municipalities to make any attempt of counterfactual building using these controls 
futile.
13 In Italy, it was adopted by:
 - Istat and ISS report at the Italian regional and provincial level https:// www. istat. it/ it/ files// 2020/ 12/ 
Rapp_ Istat_ Iss. pdf);
 - INPS report at the Italian provincial level with a focus on northern Italian municipalities (https:// www. 
inps. it/ docal legat iNP/ Mig/ Dati_ anali si_ bilan ci/ Nota_ CGSA_ mortal_ Covid 19_ def. pdf)
 - SISMG to monitor the situation of daily deaths for the elderly population (over 65 years) for Italian 
cities with more than 250,000 inhabitants (https:// repo. epipr ev. it/ index. php/ downl oad/ andam ento- della- 
morta lita- giorn aliera- sismg- nelle- citta- itali ane- in- relaz ione- allep idemia- di- covid- 19- report- 1- febbr aio-2- 
maggio- 2020- setti mo- rappo rto/? wpdmdl= 1626& refre sh= 5ee8e 7ed52 23a15 92322 029).
 - European Statistical Office (Eurostat) provided estimates of the excess mortality for the European 
Union and EFTA countries comparing all-cause deaths with deaths between January 2016 to October 
2019 https:// ec. europa. eu/ euros tat/ stati stics- expla ined/ index. php? title= Excess_ morta lity_-_ stati stics
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to generate an artificial control group and a counterfactual trend in the no-treatment 
scenario. Then, by comparing the observed outcome of the treated units with their 
potential outcome of the counterfactual scenario, one could readily retrieve treat-
ment effects as the difference between the two.

Following the intuition in Varian (2014, 2016), early applications have started to 
test the potential of this machine learning control method (MLCM) in addressing 
the so-called fundamental problem of causal inference, i.e., the fact that one cannot 
observe the potential outcome of the treated unit under the no-treatment scenario. In 
particular, we are aware of only seven papers employing this novel approach: Abrell 
et al. (2019), Benatia (2020), Benatia and de Villemeur (2019), Bijnens et al. (2019), 
Burlig et al. (2020), Cicala (2017), and Souza (2019). All these studies are confined 
to the field of energy economics and deal either with electricity markets or with the 
evaluation of energy efficiency policies with the exception of Bijnens et al. (2019) 
who look at the employment impact of the suspension of wage indexation in Bel-
gium. Burlig et al. (2020) and Cicala (2017) have both treated and untreated units in 
their samples and make use of the untreated group in their counterfactual building, 
while Souza (2019) exploits staggered adoption to predict counterfactuals thanks to 
the temporal overlap of treated and not-yet-treated units. Conversely, Abrell et  al. 
(2019), Benatia (2020), Benatia and de Villemeur (2019), and Bijnens et al. (2019) 
do not have an original control group but only treated units in settings with simulta-
neous treatment.

Importantly, Benatia (2020) is the only one to look at causal effects related to 
the COVID-19 crisis: it applies a neural network model to study the impact of con-
tainment measures on electricity demand. The COVID-19 pandemic is a peculiar 
case that lends itself well to the implementation of the ML counterfactual build-
ing method: given the worldwide spread of the contagion, it is hard to find plausi-
ble control groups as, for example, a combination of untreated units which could be 
used in a synthetic control approach. This makes it the ideal setting to harness the 
power of ML in generating an artificial counterfactual scenario.

To the best of our knowledge, this is among the first papers employing the 
MLCM in a setting with no control group, first proposed by Varian (2016), to evalu-
ate the impact of a global exogenous shock affecting all the available units. Our ML 
predictive exercise is also closely related to the methodological strand of economet-
ric literature, which deals with program evaluation and counterfactual building in 
a panel data setting (see, among others, Abadie and Cattaneo (2018) and the refer-
ences therein). With respect to this literature, however, the distinctive feature of the 
MLCM lies in the exclusive use of pre-treatment information to generate the coun-
terfactual scenario.

In the flourishing literature on the use of ML for policy purposes, a key concern 
regards two trade-offs: the one between bias and variance and the one between accu-
racy and interpretability. While the first is a general issue of ML techniques, the lat-
ter is distinctive of fields in which ML is used in the service of public policies that 
also require taking into consideration communication and accountability aspects. 
More complex “black box” methods tend to be both more accurate but less, if at all, 
interpretable. So, the choice of the appropriate technique can often fall on simpler 
algorithms to get more intuitive, and hence explainable, outputs at the expense of a 
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loss in predictive accuracy. In our case, however, we are not interested in producing 
a transparent predictive model that clearly explains how the algorithm relates the 
features to the output. We just want to produce the most accurate estimates possi-
ble. This different framework is an advantage for our purpose because the trade-off 
between accuracy and interpretability does not impose a constraint on the selection 
of the techniques to employ. Thus, we opt for a mix of methods: a simpler algorithm 
and two black box techniques and show that, for this particular task, the simpler 
method performs better than the most complex ones, at least at the aggregate level.

Specifically, we adopt the following ML algorithms, LASSO, and two methods 
based on regression trees, random forest and stochastic gradient boosting. These 
algorithms are characterized by growing degrees of complexity and flexibility.14 
LASSO is a relatively simple technique that assumes an underlying linear relation-
ship between the outcome and the predictors. In LASSO, the model is penalized 
for the sum of the absolute values of the weights. The implication of this regulari-
zation is that, depending on the value of the hyperparameter λ, LASSO forces the 
coefficients of uncorrelated or weakly correlated predictors exactly to zero, thus per-
forming variable selection. This makes LASSO less flexible but more interpretable 
than standard OLS, as it produces a sparse model in which the outcome is related 
only to a smaller subset of the predictors. By contrast, random forest and stochastic 
gradient boosting are fully non-linear methods, based on the aggregation of many 
decision trees.15 Random forest builds several different decision trees based on boot-
strapped training samples and uses at each split of the trees only a random subset of 
the predictors as split candidates, thus decorrelating the trees from one another. The 
key difference with stochastic gradient boosting is that while random forest grows 
trees in parallel, stochastic gradient boosting grows them sequentially. Similarly 
to the random forest, stochastic gradient boosting is based on the aggregation and 
growth of many decision trees. But unlike random forest, stochastic gradient boost-
ing does not involve bootstrap sampling, as each tree is based on the “residual” of 
previously grown trees, i.e., each tree is fitted on a modified version of the original 
dataset (Hastie et al. 2009). To make the results more comparable across the three 
ML methods and capture potential interactions between variables in all the selected 
ML models, we also include, for LASSO, all the pairwise interactions between 
the predictors as additional features, for a total of 256 covariates employed for this 
algorithm.16

In the ML literature, the typical routine is to randomly divide the sample in a 
training set, in which the model is built and tuned, and a testing set, in which its pre-
dictive power is tested through an evaluation of its out-of-sample predictive accu-
racy. In order to solve the other trade-off we mentioned above, the bias-variance 

14 Here, we only provide an overview of the main differences between the three methodologies. For an 
exhaustive description and more technical details on each of these methods, please refer to Hastie et al. 
(2009).
15 Although boosting can be applied to other methods than the decision tree, the one based on decision 
trees is by far one of the most popular versions.
16 Unlike LASSO, random forest and boosting by default take into account all the possible non-lineari-
ties and interactions between the features.
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trade-off, cross-validation on the training sample can be employed to select the best-
performing values of key tuning parameters that regulate the complexity or flexibil-
ity of the algorithms and reduce the risk of overfitting.

Bearing the above in mind, for each of the three different periods (February 21 
to March 31, February 21 to June 30, and February 21 to September 30), we imple-
ment the following process: (i) we split the 2015–2018 pooled dataset into a training 
sample, made up of 80% of the municipalities, and a testing sample, which consists 
of the remaining 20%; (ii) we train and tune all the algorithms on the training sample, 
on which we perform a tenfold cross-validation to select the best-performing tuning 
hyperparameters of each algorithm;17 (iii) we test how well the algorithms perform in 
predicting observed mortality on unseen data, i.e., on the 2015–2018 testing sample; 
(iv) we test model performance on the entire 2019 sample and show that algorithm per-
formance is stable over time and that all the ML methods perform, on average, better 
than the commonly adopted intuitive method; (v) we repeat this routine on the pooled 
2015–2019 data, to train the models on as much data as possible so as to maximize 
the accuracy gains; (vi) we use the models built on the 2015–2019 dataset to predict, 
for the 2020 sample, estimates of local mortality in a “no-COVID” scenario; and (vii) 
we derive municipality-level excess deaths for all the municipalities by subtracting the 
ML counterfactual estimates from the observed 2020 mortality data released by Istat. 
Municipality-level excess death estimates are relevant, especially because they can 
be considered as one of the best possible proxies to gauge the local magnitude of the 
COVID-19 impact. The underlying assumptions of our methodology are exactly the 
same of those underlying the intuitive method, namely, that (i) we are in a relatively 
static environment, at least on average (Burlig et al. 2020), i.e., mortality trends are gen-
erally not very volatile over time, with the exception of extraordinary events such as a 
war or a pandemic, which seems reasonable in our context; (ii) the difference between 
the observed and counterfactual mortality outcomes is due to the total impact of the 
exogenous “shock” represented by the COVID-19 pandemic.18 Below we will provide 
descriptive and factual evidence to demonstrate the credibility of both assumptions.

17 The hyperparameters we select via tenfold cross-validation are the following: for LASSO, the param-
eter λ which controls the shrinkage penalty; for the random forest, the parameter m, i.e., the number of 
features randomly sampled as candidates at each split (for the number of trees to grow, instead, we use 
the default value of 1,000); and for boosting, the shrinkage parameter representing the learning rate, the 
number of trees to fit and the minimum number of observations in the terminal nodes of the tree. Cross-
validation is used by running different models with several candidate values (or combinations of values, 
in the case of boosting) for all these parameters.
18 Concerns about the plausibility of the stable unit treatment value assumption (SUTVA) for the poten-
tial outcomes under the COVID-19 treatment (but not for potential outcomes under the no-treatment 
scenario, as we generate the no-COVID scenario using only pre-COVID data) are legitimate in our set-
ting (see Rubin 1980). Indeed, under the COVID-19 treatment, the potential outcomes of a given munic-
ipality are a function of the COVID-19 spread on other municipalities. Yet, the spatial spread of the 
contagion among municipalities does not threaten the reliability of our estimates. In fact, our goal is to 
estimate the gross effect of COVID-19 on each municipality, i.e., the total number of deaths directly or 
indirectly due to the pandemic (compared to a no-pandemic scenario), irrespective of how the number of 
infections and, thus, deaths, is affected by spillovers from nearby municipalities, which are unavoidably 
part of the very definition of a pandemic. Finally, note that these SUTVA-related issues equally apply to 
the intuitive approach.
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Although our dataset is a panel of Italian municipalities, in our benchmark mod-
els, we consider the data as pooled, following Andini et al. (2018). In fact, we treat 
each municipality–year pair as if it was a single observation. We do not deem this as 
a problematic aspect as we focus on a relatively short time period, whereas such a 
choice could entail issues if some of the variables we use (either the outcome or the 
predictors) were to exhibit drastic changes over time within the same municipality, 
and this is unlikely to happen in a short time span. In any case, in the results section, 
we also report the predictive performance of an ML model, which explicitly incor-
porates the longitudinal component of the sample via the inclusion of municipality 
and year dummies and show that there are no predictive gains with respect to our 
benchmark estimates. The descriptive statistics reported in Table  1 show that the 
year-by-year variation in mortality data and key predictors is rather low, reinforcing 
the validity of assumption (i) in our context. Finally, an in-time placebo test per-
formed on the year 2019, discussed in Section 4.2, will serve to underpin the plausi-
bility of both assumptions.

Importantly, we apply our random splitting on municipalities, not on municipal-
ity–year pairs. Going for the latter would make the same municipality appear in the 
training set in 1 year (e.g., 2016) but in the testing set in another year (say, 2018). To 
the extent that the predictors do not change or vary slowly over time, this would pro-
duce downward-biased estimates of the mean squared error (MSE), because the test-
ing data would not truly be “unseen” data, but data very similar to their counterparts 
for the corresponding municipality in the years that appear in the training sample. 
By splitting on municipalities, instead, we are sure that the training and testing sam-
ples do not share any municipality in common, and the same municipality can only 
appear either in the training or in the testing set for the entire time span.

Finally, for the sake of comparison of ML performance with that of a simpler, 
linear, and widely adopted method, we also report the 2019 predictive performance 
of a standard OLS model run on the full 2015–2018 sample.

4  Estimates

4.1  Predictive power of all methods used

We begin the empirical analysis by examining the forecasting performance of all 
methods used. Given the presence of approaches different from ML, we have opted 
for evaluating the performance of the various approaches in the estimation of the 
number of deaths per 10,000 inhabitants in an “ordinary” year. We select 2019 as 
the “ordinary” year and use data from 2015 to 2018 to test the predictive power of 
all methods. For forecast evaluation, we employ the mean squared error (MSE), i.e., 
the mean of the squared value of the prediction errors, as the main model selection 
approach. However, as MSE is very sensitive to outliers, we also report the mean 
absolute error (MAE), i.e., the mean of the absolute value of the errors. These two 
measures are our metrics to conduct a comparative analysis of predictive perfor-
mances. Table 2 reports the results for all the sets of methods at the dates of March 
31, June 30, and September 30.
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The crucial insight from Panel A of Table 2 is that all ML techniques and OLS 
always perform better than the intuitive approach. On average, MSE is reduced by up 
to 17.8% (February 21 to March 31), 17.4% (February 21 to June 30), 16.8% (Febru-
ary 21 to September 30), compared to using the mainstream approach adopted by 
several Italian and international institutions. This is the key result of the paper. The 
pattern is qualitatively consistent when considering MAE. A closer look at individ-
ual performances reveals that LASSO is the best-performing ML algorithm, both in 
terms of MSE and MAE. Random forest and boosting fare worse, but not by much, 
and still lead to a substantial improvement in precision over the intuitive approaches. 
When considering MSE, LASSO is followed by boosting, but when looking at 
MAE, random forest outperforms boosting. These rankings remain consistent for all 
three periods under scrutiny.19 While the superior performance of a linear method 
like LASSO is somewhat unusual compared to other works in the ML literature, it 
can be explained by the nature of the predictive problem and the limited number of 
observations and predictors. In such circumstances, it can be expected that simpler 
algorithms can match the performance of more complex methods (de Blasio et al. 
2020).20 Indeed, this is why the OLS performance is comparable to that of the ML 
routines. Note that, in a few instances, OLS is even more accurate than some of 
the ML algorithms; however, it is never the best-performing technique, and there is 
always an ML technique that is superior. Yet, it fares always better than the intui-
tive approaches, so one may be willing to trade-off a lower MSE/MAE for a more 
straightforward methodology that does not require the complexity of ML techniques.

Panel B of Table 2 reports the performance of all estimators by population size. 
First and foremost, the magnitude of the prediction error is inversely proportional 
to the municipality size. While such sharp inter-class heterogeneity may seem strik-
ing, this is actually not surprising when taking into account that the dependent vari-
able is defined as the number of deaths per 10,000 inhabitants and that the variabil-
ity of growth rates of any variable in small municipalities is substantially higher. 
Second, concerning model performance, there is also some heterogeneity depend-
ing on population size. For example, LASSO and OLS tend to perform worse for 
large municipalities. The intuitive method, instead, works fine for big cities, where 
it becomes competitive with ML performance but is imprecise and too coarse for 
small- and medium-sized municipalities. This confirms our research hypothesis that 
this method, being based on unconditional averaging, can be very sensitive to out-
liers and small changes in the input data, features that matter most when looking 

19 Furthermore, for interested readers, Table  5 in the Appendix presents the absolute variable impor-
tance ranking generated by the random forest algorithm for 2015–2018 training sample of the February 
21 to September 30 period.
20 For the sake of comparison with a longitudinal model, the predictive performance of a random for-
est model enriched with a longitudinal component, applied on the 2019 dataset for the February 21 to 
September 30 period, was the following: 923.73 (MSE) and 19.12 (MAE). Both performance metrics are 
inferior to the corresponding ones of the baseline pooled version of random forest model for the same 
period (see Panel A of Table  2). We also added spatial lags of all control variables (computed as the 
average value of all border municipalities) with the idea that information about neighboring municipali-
ties should decrease the estimation error. However, the addition of spatially lagged covariates reduced 
the MSE only by 0.8%. In light of this very small increase, we opted for using the more parsimonious 
models reported in the main text.
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at smaller municipalities than larger ones, where mortality figures tend to be much 
more stable. Indeed, municipalities above the 50,000 population cutoff, above 
which the intuitive method becomes competitive with ML, account for only 1.85% 
(146/7,904) of the total number of Italian municipalities. For more than 98% of our 
sample, all the ML methods perform far and above the official approach. As in Panel 
A of Table 2, OLS is never the most accurate technique. Besides, it tends to become 
less and less competitive as municipality size gets bigger and as the time span 
increases, with an especially pronounced drop in accuracy for municipalities above 
50,000 inhabitants. This is a serious limitation of the OLS algorithm with respect to 
the ML algorithms, which prove instead to be comparatively more stable across all 
population cutoffs and time periods under scrutiny.

In the following section, we show the excess death mortality estimates for 2020 
as computed by the best-performing algorithm for each of the four population cut-
offs (see Panel B of Table 2).

4.2  Deriving excess death figures during the first wave of the COVID‑19 
pandemic

The excess mortality estimates from all-cause deaths are not uniform throughout Italy, as 
can be seen in Fig. 1. Significant differences emerge across and within geographical areas. 
The excess mortality estimates obtained via ML techniques for the period from February 
21 to September 30 are particularly high in various northern municipalities. In particular, at 
the end of March (Fig. 1A), 393 municipalities, mostly concentrated in Lombardy, record 
an estimated excess of deaths over 300%. Further, 1,251 municipalities (28.57% of northern 
municipalities) record a percentage of excess mortality higher than 100%. They are mostly 
located in the Lombardy region and the western part of the Emilia Romagna region. Many 
of these territories are located in the provinces that record the highest number of infections 
up to that date, namely, the provinces of Milan, Bergamo, Brescia, Cremona, and Lodi 
(Lombardy), and the provinces of Piacenza, Parma, and Reggio Emilia (Emilia Romagna). 
This is in line with the results of Ceriani and Verme (2020), Modi et al. (2020), and Big-
geri et al. (2020), which analyzed the period February to April. Several municipalities in 
the provinces of Cuneo, Alessandria (Piedmont), and Imperia (Liguria) constituted clusters 
with excess mortality higher than 100%, and similar clusters were in the provinces of Trento 
(Trentino-Alto Adige) and Pesaro-Urbino (Marche), consistently with the findings of Blan-
giardo et al. (2020). On June 30 (Fig. 1B), only very few municipalities in Bergamo and 
Brescia provinces recorded an estimated excess higher than 300%. Lombardy region contin-
ued to record the highest number of municipalities with an estimated excess of deaths over 
100%, while in the provinces of Piacenza, Parma, and Reggio Emilia (Emilia Romagna), 
the majority of municipalities recorded an excess between 50 and 100% compared to the 
counterfactual scenario. A decrease in excess of deaths below 100% occurs for several 
municipalities in Cuneo and Imperia provinces. On September 30 (Fig. 1C), the number of 
municipalities with an excess higher than 100% in the Lombardy region is sensibly lower 
(212), but many municipalities (574) still record an excess of deaths above 50%. Clusters 
of municipalities with estimated excess mortality above 100% were observed over time in 
other northern regions affected by the spread of the virus, such as Piedmont and Liguria. 
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The decrease observed in the previous period in Cuneo and Imperia provinces continues 
in the subsequent period, and on September 30, the municipalities with a mortality excess 
between 50% and 100% are considerably less in comparison to the end of June. In the other 
geographical areas, the estimated mortality excess was much lower for the whole period. 
From February 21 to March 31 (Fig. 1A), the majority of municipalities recorded estimated 
excess mortality under 50%, with very few municipalities with excess mortality over 100%. 
On June 30 (Fig. 1B), the number of municipalities with an excess of deaths between 20% 
and 100% was much lower than the previous snapshot, and in the central and southern Italy, 
municipalities with higher excess mortality deaths seemed to be less widespread compared 
to the snapshots on March 31. The substantially lower excess death figures in central and 
southern areas are also confirmed by the results of Blangiardo et al. (2020) and Scortichini 
et al. (2020) who focus on similar time spans. By September 30 (Fig. 1C), there are no vis-
ible excess mortality clusters in these areas. Fig. 2, Table 3, and Table 4 in the Appendix 
clearly show that the excess death estimates in the center-south of Italy can be considered in 
line with what one would expect to happen in an “ordinary” year (2019 in our case), while 
the observed trend in the north of Italy is extraordinarily abnormal.21 The consistency of 
the estimates with the geographical evolution of COVID-19 cases confirms that the esti-
mated mortality excess from all-cause deaths is connected, both directly and indirectly, to 
the COVID-19 pandemic. A note of caution pertains to small municipalities where even 
sporadic deaths could determine large variations in percentage terms, especially when con-
sidering a short time interval such as February 21 to March 31.22

Our study allows drawing preliminary conclusions about the effects of the pan-
demic on the spatio-temporal evolution of the local excess deaths during the first 
wave. The estimated excess mortality for some municipalities between February 
21 and June 30 is lower than the values estimated for the period February 21 to 
March 31. As pointed out by Istat and ISS (2020b), the worst-affected provinces 
in the first phase of the crisis start to experience a decrease of deaths in the sec-
ond half of April. This decrease may be connected with demographic changes, 
behavioral factors, pandemic control measures, and also with the improved diag-
nostic capacity and a minor pressure on the national health system (Istat and ISS, 
2020a). However, by June 30, the estimated excess mortality remains high in many 
municipalities in northern Italy and abnormal clusters of excess mortality persist 

21 In the Appendix (Figure 2), we report a map of a placebo analysis conducted on the year 2019, where 
we have used data from 2015 to 2018 to estimate excess mortality figures during an “ordinary” year. 
Finding large excess mortality clusters in 2019, before COVID-19 hit Italy, would cast doubts on the 
plausibility of our approach. As the reader can see, this in-time falsification test shows no excess mortal-
ity clusters whatsoever in 2019, as one would expect, since there was no pandemic. Besides, we find that 
there is no spatial autocorrelation in the estimation error of this 2019 test (Moran’s I index of 0.015), 
whereas we find a strong spatial correlation for the excess mortality estimates from February 21, 2020, 
to June 30, 2020 (Moran’s I index of 0.362). This again suggests that the spatial clustering is not due to 
specific features of our estimation approach but indeed to the arrival of the pandemic. Such evidence 
lends credibility to both assumptions underpinning our approach. Lastly, Tables 3 and 4 in the Appendix 
compare the excess deaths “observed” in 2019 and in 2020 by population size and by geographical area.
22 Some small municipalities in the center-south of Italy exhibit excess mortality higher than 100% by 
the end of March. However, such large effects, which are mostly due to random variation amplified by 
their low population figures, are short-lived as they are averaged away when considering longer time 
periods (see Fig. 1B and C).
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in well-defined areas. The decrease in the estimates of excess mortality emerges 
even more when looking at the whole period from February 21 to September 30. 
Although small clusters of municipalities with high excess deaths persist, above all 
in the Lombardy region, the local mortality excess is lower and substantially less 
widespread. The period June to September is considered a transition period in the 
spread of the COVID-19 infection, and according to the Istat and ISS (2020a), dur-
ing the summer months, the mortality trend was in line with the average observed 
in the previous years. Therefore, the cumulative mortality excess observed in our 
map at the end of September in several northern municipalities is entirely due to 
the excess of the all-cause deaths during the first phase of the pandemic.

By aggregating the municipality excess mortality estimates in the north of Italy, 
we find an increase of 23,603 deaths compared to the counterfactual scenario 
for the period from February 21 to March 31, 2020. This estimate is in line with 
the figures obtained by INPS, Istat, and ISS (2020a) by employing the intuitive 
approach and suggests that the “official” number of deaths directly due to COVID-
19 (11,011) might be severely underestimated. However, the gap between our 
excess mortality estimates (39,362) and the “official” number of deaths directly 
due to COVID-19 in Northern Italy (30,580) becomes slightly smaller by the end 
of September. This finding suggests that, despite delays in reporting the attribution 
of deaths to COVID-19 and irrespective of potential harvesting effects, the track-
ing capacity of Italian authorities improved over the course of the pandemic.

5  Conclusions

In this work, we propose a more sophisticated approach to produce local estimates 
of excess mortality during the first wave (February to September 2020) of the 
COVID-19 pandemic in Italy. Specifically, as COVID-19 is a major global exog-
enous “shock” affecting all municipalities, we adopt a novel MLCM to build a more 
plausible counterfactual scenario of mortality figures for 2020 in the absence of the 
pandemic. We show that the ability of ML methods to build the artificial control 
group in a “no-COVID-19” scenario outperforms the mainstream intuitive approach 
adopted by Italian institutions, with particularly sizable predictive gains at the more 
granular level of small- and medium-sized municipalities. Importantly, our method-
ological improvements do not depend on any additional identifying condition, i.e., 
our assumptions are exactly the same as those underpinning the intuitive method.

After showing that these methodologies improve performance by up to 17.8%, 
we build a municipality-level dataset of the first-wave excess death mortality fig-
ures by comparing counterfactual and observed mortality data in each municipality. 
This dataset, which is shared jointly with the paper, is intended to be available to the 
general public and to researchers interested in investigating local determinants and 
territorial factors that may have contributed to the rapid and heterogeneous spread of 
the first wave of the pandemic across Italy, as well as for evaluating policy responses 
at a local level and compare spatio-temporal differences with the evolution of the 
ongoing second wave. We hope our methodological contribution will lead to further 
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Fig. 1  Percentage of municipal excess deaths detected from February 21, 2020, to September 30, 2020, 
with respect to the counterfactual scenario estimated via ML techniques. A From February 21, 2020, 
to March 31, 2020 (note: excess mortality estimates for the north of Italy, 23,603; official number of 
COVID-19 deaths, 11,011. Gap between these estimates on March 31, 12,592). B From February 21, 
2020, to June 30, 2020 (note: excess mortality estimates for the north of Italy, 40,001; official number 
of COVID-19 deaths, 29,752. Gap between these estimates on June 30, 10,249). C From February 21, 
2020, to September 30, 2020 (note: excess mortality estimates for the north of Italy, 39,362; official num-
ber of COVID-19 deaths, 30,580. Gap between these estimates on September 30, 8,782)
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refinements of the current approaches targeted at estimating mortality during the 
current pandemic and, in turn, to a broader understanding of the spread of the virus 
in Italy and the efficacy of the policies adopted to contain its impacts.

Our methodological framework could be extended to other countries and, pos-
sibly, to the entire European Union, to study the temporal and spatial evolution of 
the first as well as the ongoing second wave. Besides, we emphasize that there is 
room for more research as, in principle, the inclusion of a richer set of covariates, 

Fig. 1  (continued)
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a comprehensive integration of spatial autocorrelation patterns (such as the 
inclusion of additional features capturing economic links across municipalities), 
or the adoption of other ML methods, may further increase the statistical accu-
racy of our approach. Nonetheless, our main conclusion remains that the intui-
tive approach can lead to imprecise excess mortality estimates, especially when 
applied at a high spatial granularity, and should be possibly replaced by more 
advanced data-driven techniques.

Fig. 1  (continued)
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Appendix

Fig. 2  Percentage of municipal excess deaths detected from February 21, 2019, to June 30, 2019, with 
respect to predicted deaths estimated via ML techniques. Note: Excess mortality estimates (measurement 
error) at the country level: 1,365
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Table 3  Share of excess deaths “observed” in 2019 and in 2020 by population size

Share of munici-
palities with excess 
deaths above 50%

Share of munici-
palities with excess 
deaths above 100%

Share of munici-
palities with 
excess deaths 
above 300%

2019 2020 2019 2020 2019 2020

  Overall 8.81% 21.64% 2.32% 9.50% 0.05% 0.37%
  Less than 2,000 inhabitants 17.01% 26.57% 5.12% 11.86% 0.12% 0.66%
  Inhabitants ⩾ 2,000 and < 5,000 4.53% 20.98% 0.30% 8.71% 0.00% 0.15%
  Inhabitants ⩾ 5,000 and < 50,000 0.71% 15.69% 0.00% 7.05% 0.00% 0.13%
  More than 50,000 inhabitants 0.00% 5.44% 0.00% 2.04% 0.00% 0.00%

Table 4  Share of excess deaths “observed” in 2019 and in 2020 by geographic and population size

Share of munici-
palities with excess 
deaths above 50%

Share of munici-
palities with excess 
deaths above 100%

Share of munici-
palities with 
excess deaths 
above 300%

2019 2020 2019 2020 2019 2020

North
  Overall 9.21% 32.48% 2.83% 16.12% 0.09% 0.66%
  Less than 2,000 inhabitants 17.38% 34.75% 5.94% 18.61% 0.20% 1.14%
  Inhabitants ⩾ 2,000 and < 5,000 3.98% 33.22% 0.35% 14.97% 0.00% 0.27%
  Inhabitants ⩾ 5,000 and < 50,000 0.59% 28.64% 0.00% 13.39% 0.00% 0.25%
  More than 50,000 inhabitants 0.00% 14.29% 0.00% 6.12% 0.00% 0.00%

Center-south
  Overall 8.32% 8.15% 1.68% 1.25% 0.00% 0.00%
  Less than 2,000 inhabitants 16.48% 15.20% 3.96% 2.48% 0.00% 0.00%
  Inhabitants ⩾ 2,000 and < 5,000 5.22% 5.49% 0.22% 0.78% 0.00% 0.00%
  Inhabitants ⩾ 5,000 and < 50,000 0.83% 1.49% 0.00% 0.09% 0.00% 0.00%
  More than 50,000 inhabitants 0.00% 1.02% 0.00% 0.00% 0.00% 0.00%
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Table 5  Variable importance ranking of the random forest algorithm (2015–2018 training sample for the 
period February 21 to September 30)

Variable Increase in node purity

Share of those aged 80+ 5,633,789
Share of those aged 65+ 4,576,871
Share of men aged 80+ 3,579,953
Share of men aged 65+ 3,367,116
Population density (inhabitants per square kilometer) 2,521,136
Population 2,508,496
Number of employees 2,385,304
Number of deaths from Jan 1 to Feb 20 (per 10,000 inhabitants) 1,887,305
Share of men 1,853,599
PM-10 (μg/m3) 1,601,275
Share of employment in manufacturing 1,463,918
Number of deaths in the previous year (per 10,000 inhabitants) 1,449,038
Degree of urbanization 384,249.6
Share of municipalities with a hospital in at least a neighboring municipality 220,769.3
Number of deaths due to road accidents (per 10,000 inhabitants) 140,360.1
Share of municipalities with a hospital 23,915.52
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